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Abstract. Microscopic self-organization phenomena inside a living cell should not represent merely
a reduced copy of self-organization in macroscopic systems. A cell is populated by active pro-
tein machines that communicate via small molecules diffusing through the cytoplasm. Mutual syn-
chronization of machine cycles can spontaneously develop in such networks – an effect which is
similar to coherent laser generation. On the other hand, an interplay between reactions, diffusion
and phase transitions in biological soft matter may lead to the formation of stationary or traveling
nonequilibrium nanoscale structures.
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1. Introduction

Living biological cells demonstrate an extremely high degree of internal functional
organization and coordination of processes at a molecular level. On the other hand,
they are physical systems and must therefore obey the laws of statistical physics. In
the middle of the 20th century, E. Schrödinger has shown [1] that the second law
of thermodynamics, predicting that entropy and hence the disorder of a physical
system should increase with time, is not applicable to open systems in the pres-
ence of energy flows. Such systems may maintain and develop their organization
in the course of time – a phenomenon which is known as non-equilibrium self-
organization. In the last decades, self-organization processes in various physical,
chemical and biological systems have been investigated [2–6]. A typical example
of chemical self-organization is provided by complex wave patterns spontaneously
formed in the Belousov-Zhabotinsky reaction [7, 8]. These patterns are however
macroscopic, with a characteristic wavelength of an order of several millimeters.

Some time ago we have asked a question whether self-organization in living
cells represents only a reduced copy of spatio-temporal self-organization phenom-
ena in macroscopic reaction-diffusion systems or whether qualitatively new effects
become possible at much shorter, microscopic length scales of a single cell [11].
We have noticed [11–13] that the length scales of spatial patterns resulting purely
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from an interplay between reactions and diffusion are limited by the diffusion
length which can be estimated as Ldiff =

√
Dk where D is the diffusion con-

stant and k is the reaction rate. The diffusion length is just the distance passed by
diffusively moving molecules between two reactive collisions and, obviously, any
developing pattern of chemical concentration should be uniform below this length
scale. For typical biochemical reactions D = 10−5cm2/s and k = 103s−1, so that
Ldiff = 1 µm. Hence, wavelengths of stationary Turing patterns or propagating
waves in biochemical systems cannot generally exceed a micrometer.

This conclusion agrees with the experimental data. Rotating spiral waves of
Ca++ with a wavelength of about 30 µm have been observed inside giant cells
(frog eggs) of a millimeter size [9]. Recently, traveling glycolytic waves with the
wavelengths of 3 to 4 µm were found in elongated neutropil cells with the size
of about 20 µm [10]. But cells can be much smaller (for example, a bacterium
E. coli has the width of only half a micrometer) and, moreover, a cell may be fur-
ther divided into submicrometer compartments. Apparently, spatiotemporal pattern
formation of reaction-diffusion type cannot account for the high degree of self-
organization needed to maintain physiological operation of cells at submicrometer
levels [11–13]. Slow uniform biochemical oscillations of chemical concentrations
[14] are possible even in such microvolumes. However, their typical temporal peri-
ods are in the order of minutes and hours and, while providing a possibility for
slow biochemical regulation, they cannot be responsible for rapid microscopic
self-organization of intracellular processes.

The functioning of a cell is based on a highly coordinated action of a large popu-
lation of molecular machines. These machines, representing single proteins or their
complexes, are far from thermal equilibrium because they receive energy in the
chemical form. This allows them to operate autonomously, overcoming the restric-
tions set by thermodynamics for equilibrium systems. Active protein machines are
immersed into a water solution providing a passive medium needed for the supply
of energy and for the communication between the machines. The communication
is realized through diffusion of small molecules released by a machine and able
to affect the operation of another machine. Small molecules are also employed to
submit energy.

For a physicist, this description reminds of the structure and operation of an-
other well-known nonequilibrium system – the solid-state laser. The laser is formed
by a population of active atoms immersed into a passive solid-state matrix. Energy
is supplied to the atoms with incoherent photons of optical pumping. Interac-
tions between the atoms result from the generation of photons and their action
on other atoms (the effect of quantum stimulated emission). When pumping is
strong enough, this nonequilibrium system undergoes a spontaneous transition to
laser operation characterized by strong correlations in the states of individual active
atoms and the coherente of emitted photons [15].

Networks of interacting molecular machines may display a similar behaviour.
In a series of publications [16–20] we have shown that mutual synchronization of
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turnover cycles can spontaneously develop in populations of reacting enzyme mo-
lecules confined to microvolumes. This leads to the development of strong correla-
tions in conformational states of individual protein machines – enzyme molecules,
manifested in a coherent release of the product.

Another important physical aspect of a cell is that it contains many subsys-
tems representing weakly condensed matter. Examples of such ‘soft’ matter are
biological membranes, vesicles, the cytoskeleton formed by microtubules, and con-
centrated polymer solutions. Typically, the organization of soft matter is extremely
labile and various phase transitions transforming one equilibrium structure into
another are possible. A special feature of the living cell is that its soft matter sub-
systems are coupled to nonequilibrium chemical reactions. An interplay between
phase transitions, reaction and diffusion in weakly condensed matter can give rise
to new stationary structures and to traveling waves [21]. In contrast to the patterns
based only on reactions and diffusion, the wavelength of nonequilibrium struc-
tures in reacting soft matter is not however limited by the diffusion length and
may belong to the nanoscale domain. Therefore, they would perfectly fit into the
characteristic dimensions of a single biological cell.

These two aspects of microscopic self-organization in living cells are reviewed
in the present paper, using examples from our own research. In the next two sec-
tions, networks of interacting molecular machines are considered and synchroniz-
ation phenomena in such networks are analyzed. In the subsequent section, theor-
etical approaches needed for modeling of nanoscale pattern formation in nonequi-
librium soft matter are discussed.

2. Networks of Protein Machines

Diffusion of small molecules in microvolumes is extremely strong. For a small
globular volume of linear size L filled with liquid, the mixing time for small mo-
lecule with diffusion constant D can be estimated as

tmix ≈ L2

D
. (1)

After this time, a molecule released into the volume will forget its initial position
and will be found with equal probability anywhere inside it. For a volume of size
L = 1 µm and the diffusion constant D = 10−5cm2/s typical for small molecules in
water solutions, we have tmix ≈ 1 ms.

Suppose that we have two small molecules of size R that diffuse freely inside
a microvolume. After what traffic time ttraff ic they would collide, meeting each
another? A rough estimate for this characteristic time can be obtained using the
theory of diffusion-controlled reactions. We find [11–13] that

ttraff ic ≈ L3

DR
(2)



658 A.S. MIKHAILOV AND B. HESS

This is a remarkable result. For particles of nanometer size R = 1 nm and for L
= 1 µm, D = 10−5cm2/s, it predicts that ttraff ic = 1 s. Hence, any two molecules
in a micrometer volume would meet each other every second! Note that the traffic
time depends strongly on the size L of the volume. In submicrometer volumes
(L = 0.1 µm) it decreases down to a millisecond, whereas in the volumes of
size L = 10 µm the particles would need a thousand seconds to find each other.
Such extreme sensitivity already indicates that very special kinetic regimes may be
expected in small cells and inside cellular compartments.

Communication between protein machines is realized by small molecules trav-
eling through the cell volume. When such a molecule arrives at a proper protein,
it should dock at a particular site on its surface. The radius of this site would be
typically in the nanometer range. The time needed for a messenger molecule to find
by simple diffusion a docking site of a given protein can be again estimated using
equation (2) where D is then the diffusion constant of small messenger molecules
(proteins are heavy and their mobility can be neglected) and R is the radius of the
docking site (which is of the same order of magnitude as the size of the messen-
ger molecules). Thus, even if a particular protein machine is present in a single
copy inside a cell of a micrometer size, it can be found by a diffusing messenger
molecule within a second.

Note that the traffic time is always much larger than the mixing time and their
ratio is given by

M = ttraff ic

tmix

= L

R
. (3)

The ratio M has a simple interpretation: a messenger molecule should typically
cross M times the reaction volume before it finds a docking site on the surface of a
particular single protein. For a cell of a micrometer size, M = 1000.

A cell may contain a certain number N of proteins of a particular kind and a
diffusively moving messenger molecules can dock to any of them. If N targets are
randomly distributed over the volume, the transit time needed to find the first of
them and dock to it is estimated as

ttransit = 1

N
ttraff ic = L3

NDR
(4)

The ratio

MN = ttransit

tmix

= L

NR
(5)

tells us how many times a messenger molecule will cross the entire volume before
it finds a target.

Using equation (5), a critical number Ncrit can be defined as

Ncrit = L

R
(6)
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If a cell contains less than Ncrit targets of a given kind, the first target will be found
by a messenger molecule after crossing at least several times the entire reaction
volume, so that the initial location of the messenger molecule is irrelevant and
completely forgotten. In the opposite limit of N � Ncrit the first target will be
found before the whole volume is crossed, and thus in a neighbourhood of a point
where the messenger molecule was released. Note that when N = Ncrit the transit
time coincides with the mixing time, ttransit = tmix .

The critical concentration ccrit of targets can also be defined as

ccrit = Ncrit

L3
= 1

L2R
(7)

The critical number Ncrit and the critical concentration ccrit of protein targets de-
pend only on the size L of the reaction volume and the radius R of the docking
site on a target. For a cell of a micrometer size, Ncrit = 1000 and the critical
concentration is ccrit = 1015cm−3 = 10−6M. In a cellular compartment of size L

= 0.1 µm, we have Ncrit = 100 and the critical concentration increases to 10−4M.
Depending on the concentration of protein machines of a given kind, different

communication regimes can be realized. At high concentrations, communication
based on diffusion is local because messengers find their targets in a vicinity of the
machine that has released it. On the other hand, when c < ccrit the communication
is global because any target inside the reaction volume can be found with equal
probability, independent of its location and the point where a messenger molecule
has started its motion.

Various machines populate a living cell. Some of them act as molecular motors.
Other machines are chemical, and their task is to facilitate certain chemical reac-
tions or transitions of ions. A common property of any machine is that it operates
out of thermal equilibrium and needs energy for its operation. But energy can be
supplied to molecular machines only in discrete portions, with ATP or other small
molecules. Each portion of energy provides a kick that pushes a macromolecule
to a conformational state far from equilibrium. This is followed by conformational
relaxation that tends to return the protein to its equilibrium state.

Generally, the duration of a single cycle of a machine is limited by the time
needed for conformational relaxation. Such relaxation is a complex process that
involves passing through a sequence of many configurational substates separated
by energy barriers. An example of configurational relaxation is yielded by folding
of a protein molecule. The relaxation times can differ greatly from one protein to
another, they also depend on how far is initially a molecule from its equilibrium
conformation.

Many protein machines of a cell are slow, with characteristic cycle times τ

ranging from tens of milliseconds to seconds (and even much more for the ma-
chines involved in genetic expression). For such machines, dynamical processes
of conformational relaxation which are responsible for their operation may be
significantly longer than all diffusion times characterizing intramolecular commu-
nication.
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When the conditions τ � ttransit � tmixing hold, a population of protein
machines effectively represents a molecular network where rapid global commu-
nication is possible [12, 13]. The network is formed by dynamical elements (protein
machines) that interact via exchange of small messenger molecules diffusively
traveling through the reaction volume. Since ttransit � tmixing , a messenger mo-
lecule released by a given machine may equally probable find any of the machines
in the cell, independent of their locations. Moreover, since τ � ttransit this would
occur within time that is much shorter than the duration of a single dynamical cycle
of a machine.

Because of instantaneous long-range interactions, a network of protein ma-
chines effectively represents a highly dimensional dynamical system, where in-
ternal states of individual machines may become strongly correlated. In other words,
coherent collective dynamics of protein machines may develop.

In the last decades, mathematical models of globally coupled periodic [22] and
chaotic [23] oscillators have been studied and various synchronization phenomena
in such models have been investigated. Synchronization phenomena are possible
in populations of neural cells and can play an important role in the brain [24].
Our analysis reveals that populations of protein machines inside a single living
cell may form similar networks, where highly coordinated self-organized collective
operation takes place.

In the next section we consider an example of a molecular network formed by a
population of allosteric enzymes in a microvolume and show that this system can
undergo a spontaneous transition to coherent collective behaviour characterized by
the synchronization of individual turnover cycles.

3. Mutual Synchronization of Enzymic Turnover Cycles

Enzymes are proteins acting as single-molecule catalysts. Their function is to con-
vert substrates into product molecules, i.e. to realize a reaction S + E → E + P .
A substrate molecule binds to an enzyme and is placed at an active center inside it.
The energy barrier for conversion is then significantly reduced, and the substrate is
converted into a product and the new product molecule is released into the solution.
The enzyme operation is characterized by its turnover rate defined as the number
of product molecules released per unit time by a single enzyme molecule, provided
the substrate is present in abundance. The inverse of the turnover rate is the turnover
time, indicating what time is needed to convert a single substrate molecule. The
turnover time may be as short as a microsecond, but typically it ranges from tens
of milliseconds to a few seconds.

Are enzymes molecular machines? Not necessarily. Heterogeneous catalysis
takes place also in the inorganic matter, e.g. on metal surfaces. It may well be that,
once a substrate molecule is bound, it is already correctly positioned in an active
center of an enzyme and then should only wait until a fluctuation overcoming a
(reduced) energy barrier arrives and transforms a bound substrate molecule into a
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product which immediately dissociates. In this case, the role of the protein is only
to provide a static equilibrium support with an optimal atomic configuration inside
the active center. There is experimental evidence that some enzymes indeed act in
this straightforward manner [25]. In this case, conformational transitions are not
directly involved in the turnover cycle, though conformational fluctuations (known
as dynamic disorder) can still influence the enzyme activity by modulating the
height of the energy barrier.

If an enzyme operates as a protein machine, conformational transitions and
the processes of conformational relaxation must represent an essential part of its
turnover cycle [26]. When a substrate molecule becomes bound to a site on the
surface of an enzyme, this may initiate a sequence of conformational changes in
the substrate-enzyme complex. After some time, an optimal configuration redu-
cing the electronic energy barrier for the conversion of substrate into product is
reached and the conversion occurs. The formed product-enzyme complex may go
through another sequence of conformational transitions, bringing the substrate to
the surface and facilitating its dissociation. When the product is released, a protein
may be found in a conformation different from its equilibrium state and should
then return to it. The internal motions of the substrate-enzyme and product-enzyme
complexes, as well as the final return of a free enzyme to its equilibrium state, rep-
resent different processes of conformational relaxation. The energy kick, bringing
a molecule far from equilibrium and initiating the relaxation, is here provided when
a substrate molecule is bound. Additional energy may be released when a substrate
is converted to product inside the enzyme. A distinguishing feature of enzymes, op-
erating as protein machines, should be therefore that their turnover cycles include
many intermediate substates which differ not by their chemical composition, but by
their physical configuration corresponding to different conformations of the same
substrate-enzyme or product-enzyme complex. The transitions between individual
conformational states occur then in an ordered way, as a relaxation process.

Conformational relaxation has been extensively discussed with respect to pro-
tein folding, which can be viewed as a process of relaxation from a distant and
strongly nonequilibrium initial physical state. Because many intermediate meta-
stable substates, separated by energy barriers of varying height, are present here,
the relaxation is best viewed [27] as diffusive drift along a certain conformational
coordinate φ

dφ

dt
= −�

∂U

∂φ
+ η(t) (8)

where U(x) is the free energy landscape, � is the relaxation constant and η(t) is
a white noise of intensity σ , accounting for thermal intramolecular fluctuations.
Typically, the energy landscape has the form of a downward slope with small
irregular local variations. As a simple model, a linear shape with a constant slope
can be chosen. In this approximation, equation (8) is reduced to

dφ

dt
= υ + η(t) (9)
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Figure 1. Enzyme as a protein machine.

which describes a diffusive drift at a constant mean vetocity υ accompanied by
random fluctuations.

Applying such concepts to the operation of an enzyme machine, its turnover
cycle is modelled as diffusive drift motion along a conformational coordinate φ

which can be considered as the cycle phase (Figure 1). The cycle begins with
binding of a substrate molecule. The first conformational substate of the substrate-
enzyme complex corresponds to the phase φ = 0. Starting from this point, the
enzyme begins its internal relaxational motion described by equation (9). When
the phase φ = φp inside the cycle is reached, a product molecule is released. This
is followed by the relaxation of the free enzyme to its equilibrium conformation.
For simplicity, we assume that this process is again described by equation (9) and
corresponds to the phase interval from φ = φp to φ = 1. In this model, the
mean duration of a turnover cycle is τ0 =< τ >= 1/υ and the relative statistical
dispersion of turnover times is ξ = (1/τ0)(< 'τ 2 >)1/2 ≈ (2στ0)

1/2.
The activity of enzymes can be allosterically regulated. Allosteric enzymes

have an additional site where small regulatory molecules can bind. Binding of a
regulatory molecule induces a transition of the enzyme to a different conforma-
tion, where the binding probability rate for a substrate molecule is modified. It is
increased in the case of allosteric activation and decreased for allosteric inhibition.
The regulatory molecules often represent products of the same enzymic reaction,
so that product activation or product inhibition takes place.
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As an example, we consider a simple reaction scheme

S + E → E + P,P → 0 (10)

where binding of the substrate S is allosterically activated by the product P . The
substrate concentration is maintained constant and the product is continuously de-
graded to prevent its accumulation. The decay rate of molecules is higher than
the enzymatic turnover rate. An individual turnover cycle includes a sequence of
transitions through different conformational substates, as explained above. The re-
action proceeds in a microvolume containing a relatively small number of enzyme
molecules. For this reaction, the conditions of a molecular network are satisfied,
that is τ0 � ttransit � tmixing .

Direct stochastic simulations of the reaction (10) have been performed [18]. In
these simulations, the population of enzymes consisted of N = 200 molecules
and the intensity of allosteric regulation was varied (the strength of allosteric ac-
tivation can be specified by the ratio r of substrate binding rates in the presence
and in absence of a bound regulatory molecule). Binding of substrate and decay of
product molecules were modelled as discrete probabilistic events; the internal con-
formational dynamics of individual enzymes was modelled as a stochastic process
described by equation (9).

When allosteric regulation was weak (r = 1.2), incoherent kinetics has been
observed (Figure 2). In this classical kinetic regime, the turnover cycles of indi-
vidual enzymes are not correlated. The histogram of the distribution over cycle
phases φ at a given time shows (Figure 2a) that the phases are uniformly distributed
along the entire interval from 0 to 1 (a peak at φ = 0 corresponds to enzymes in
the ground state waiting to bind a substrate). The number m of product molecules
in the reaction volume fluctuates around a certain mean level (Figure 2b) and a
Poissonian distribution for this number is found (Figure 2c).

Increasing the strength of allosteric regulation to r = 2 changes drastically
the reaction kinetics. Now enzymes form two coherent groups (Figure 3a). Inside
a group, the phases are strongly correlated and there is a phase shift of half a
turnover time between the groups. This synchronous behaviour is manifested in
rapid periodic spiking in the number of product molecules at a period equal to
the half of a turnover time (Figure 3b). Because of such spiking, the statistical
distribution for these molecules is strongly non-Poissonian (Figure 3c).

It should be emphasized that rapid spiking, resulting from synchronization of
intramolecular dynamica in individual enzyme molecules, is qualitatively different
from slow kinetic oscillations (which are not possible for the considered reaction
(10)). In kinetic oscillations, the distributions of reactants remain Poissonian with
their mean numbers slowly varying with time. In contrast to this, the synchron-
ous kinetic regimes are characterized by strong deviations from equilibrium in the
statistical distributions of reactants already at a microscopic level.

To illustrate the differente, an example of optical systems can be discussed.
First, we take a lamp and incorporate it into an oscillatory electric circuit. As a
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Figure 2. Incoherent kinetic regime in a population of 200 enzyme molecules: (a) distribution
over cycle phases, (b) time dependence of the number of product molecules, and (c) statistical
distribution of the number of product molecules in the microvolume. From [18].
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Figure 3. Coherent kinetics in a population of 200 enzyme molecules: (a) distribution over
cycle phases, (b) time dependence of the number of product molecules, and (c) statistical
distribution of the number of product molecules in the microvolume. From [18].
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result, the intensity of the emitted light will be periodically varying with time.
However, such intensity oscillations are still incoherent, and the statistics of emitted
photons remains Poissonian here. On the other hand, if we take a laser we shall
find that its operation is coherent. This means that the photon statistics is strongly
non-Poissonian and the internal states of active atoms are rigidly correlated. The
deviations from thermal equilibrium are observed then already at a microscopic
level, for the probability distributions of individual atoms.

The synchronous kinetic regimes of molecular networks represent classical ana-
logs of the quantum laser operation. In the last years, systematic theoretical invest-
igations of coherent collective kinetics for various models of allosteric reactions
with product activation [16–18] and product inhibition [19] have been performed.
Similar behaviour was also found for non-allosteric enzymic reactions with sub-
strate loops [20]. The results of these studies indicate that mutual synchronization
of molecular turnover cycles is a robust phenomenon, which is found under various
model modifications. Importantly, the synchronization persists even for relatively
high intensities of intramolecular fluctuations when the statistical dispersion of
turnover times reaches 20%.

Experimental observations of spontaneous coherent activity in enzymic popu-
lations confined to microvolumes are not yet available. However, interesting ex-
periments with external synchronization of enzymic turnover cycles have been
performed. In these experiments [28–30] with the photosensitive cytochrome P-
450 dependent monooxygenase system the turnover cycles of individual enzymes
ware synchronized by applying repeated light flashes at a period T = 1.32 s which
was only slightly shorter than the turnover time of these enzymes. Then periodic
illumination was stopped and the time dependence of the product concentration
was optically monitored. It was found that the product concentration changes in
steps, with the duration of each single step close to the turnover time of an enzyme
molecule. Within a step, the product concentration remains constant because all
enzymes are inside their cycles and are therefore ‘silent’. At the end of a step,
the product concentration is steeply increased because many enzymes have syn-
chronously released product molecules. Several such steps, following initial optical
synchronization, have been observed. They become less pronounced and finally
fade away with time because of the presence of intramolecular fluctuations. From
the experimental data, the statistical dispersion of turnover times of about 20% has
been deduced [30].

Though only the effects of mutual synchronization in molecular enzymic net-
works have been discussed here, similar behaviour can be expected in networks of
other molecular machines populating a living cell. The biochemical activity of a
cell can be compared with operation of large industrial factory where certain parts
are produced by a system of machines. Products of one machine are then used
by other machines for manufacturing of their products or for regulation of their
functions. Two possible modes of operation of such a factory can be imagined.
In the asynchronous mode, the parts produced by all machines are first depos-
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ited and accumulated in a common store. They are taken back from this store by
other machines, when the parts are needed for further production. This kind of
organization is not however optimal, since it requires large storage facilities and
many transactions. It becomes deficient when intermediate products are potentially
unstable and can easily be lost or damaged during the storage process. When
the synchronous operation mode is employed, the intermediate products, required
for a certain operation step in a given machine, are released by other machines
and become available exactly at the moment when they are needed. Hence, large
storage facilities are eliminated and the entire process may run much faster. Our
analysis suggests that under certain conditions the biochemical subsystems of a
cell may operate in the synchronous mode. When this occurs, the entire population
of reacting and interacting protein molecules can be viewed as a highly connected
coherent dynamic molecular network.

The characteristic feature of synchronization phenomena in molecular networks
is that complex self-organized structures develop not in the physical, coordinate
space, but in the ‘internal’ space of a population of protein machines corresponding
to their various conformations.

4. Self-Organization in Reactive Soft Matter

As already mentioned, spatiotemporal pattern formation based purely on reactions
and diffusion is impossible on the scales shorter than the characteristic diffusion
length which is of order of a micrometer for typical biochemical reactions. In con-
trast to this, equilibrium structures in condensed systems with attractive physical
interactions between particles can be very small. Atomic clusters may include just
tens or hundreds of atoms. ‘Quantum dots’ on specially prepared metal surfaces
have the characteristic size of a few nanometers. Generally, the minimum limit for
the size of equilibrium structures is determined by the radius of attractive interac-
tions between molecules in such systems, which can be a fraction of a nanometer.
To obtain nonequilibrium nanoscale structures, systems with both chemical reac-
tions and physical interactions between the particles must be considered. These
structures may result from the joint action of cohesion, reactions and diffusion.
The cohesion, responsible for the formation of equilibrium thermodynamics struc-
tures, should not however be too strong. Since the reaction effects are relatively
weak, they can compete with physical interactions between the particles and thus
influence the microscopic organization of a system only if it is structurally labile.

Structural lability is a feature of ‘soft matter’ representing molecular systems
with weak attractive interactions. The examples of such soft matter are provided
by liquid crystals, Langmuir films, lipid membranes, vesicles, or polymers. These
condensed systems often have a great number of different equilibrium structures
and can easily undergo phase transitions when the medium parameters are changed.
Stable nonequilibrium structures emerge from an interplay between such structural
phase transitions and chemical reactions, coupled to diffusion [21].
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Suppose that a system represents a mixture of molecules A and B, such that the
molecules of the same kind attract each another and there are repulsive interactions
between molecules A and B. If the repulsion is sufficiently strong, this mixture un-
dergoes phase separation and spatial domains filled predominantly by particles A or
B are formed. At the initial stage of the phase separation process, the domains are
very small. In the course of time their sizes are however increasing until eventually
the whole medium becomes divided into just two domains occupied by particles A

and B. The kinetics of this process, which can be viewed as complex relation to an
equilibrium spatially segregated distribution, is controlled by diffusion of particles
and interactions between them.

Let us add now the reactions A ↔ B which convert different kinds of molecules
one into another. If the system is closed and the reactions result only from thermal
activation, they cannot influence the equilibrium state of the system determined by
the minimum of its free energy (indeed, kinetic coefficients such as the diffusion
or reaction rate constants cannot enter in an expression for free energy). Therefore,
though the kinetics of the relaxation process may be different, the asymptotic state
of the system should be the same as in absence of the reactions, i.e. the medium
will still separate into macroscopic phase domains.

The behaviour becomes qualitatively different when the system is open and
energy is supplied to it. Suppose, for example, that the first reaction is photoin-
duced, i.e. we have A + h̄ν → B. Now energy is supplied with the flux of photons
and then dissipated into a thermal bath which should be connected to the system
to prevent its heating. When the energy flow is strong enough, the system is far
from thermal equilibrium and its asymptotic state should no longer correspond to
a minimum of free energy. Theoretical investigations [31–33] show that, instead of
the macroscopic phase separation, this system develops a periodic stationary spatial
pattern of domains filled with particles A or B. The wavelength of this pattern can
be roughly estimated [33] as

λ ≈ √
r0Ldiff (11)

where r0 is the characteristic interaction radius and Ldiff is the diffusion length
defined as Ldiff = √

D/k where k is the rate constant of the photoinduced chem-
ical reaction. It is determined by the rate of the chemical reaction and, therefore,
by the rate of supply of energy to the system. We see that λ ∝ k−1/4 and thus
the wavelength goes to infinity as the reaction rate is decreased. This effect of
nonequilibrium pattern formation has been experimentally studied [34] for polymer
blends in the presence of photoinduced reactions. The predicted dependence of the
wavelength on the illumination intensity has been confirmed.

Analyzing the above expression for λ, we can notice that, because the interac-
tion radius r0 is just a few Å and much shorter than the diffusion length Ldiff ,
the wavelength should lie in the range Ldiff � λ � r0. Hence, nonequilibrium
stationary structures with spatial scales shorter than the diffusion length can be
obtained. Such dissipative structures exist because of the energy flow acting on the
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system. Their properties can be directly controlled by varying the rate of energy
supply.

In contrast to equilibrium systems where only stationary structures may be
observed, nonequilibrium physical systems can also show regular or chaotic self-
oscillations and may support active propagation of waves. Many different traveling
wave patterns are known in the theory of reaction-diffusion systems. However,
the smallest characteristic wavelength of such traveling patterns is again limited
by the diffusion length and cannot be very short. Such a limitation is absent for
systems combining reactions and diflusion with potential energetic interactions
between particles. Traveling nanostructures, that contain as small as only hundreds
of reading atoms, are possible under these conditions.

Hildebrand et al. considered [35] a system with surface chemical reactions in
the presence of interactions between adsorbed molecules. Their model can be in-
terpreted as involving three different species A,B and C (the species A and B

correspond to adsorbed molecules and the species C are vacant lattice sites). The
surface reaction scheme is

C ↔ A,C → B,A + B → 2C + P (12)

where the first two steps represent adsorption and desorption of molecules A and
B from the gas phase; the last step describes a reaction between A and B leading
to the formation of two vacant sites C and a product molecule P that immedi-
ately leaves the reactive surface. It was assumed that attractive lateral interactions
between molecules A and also between molecules A and B were present. The reac-
tion is operated under flow conditions, where molecules A and B are continuously
supplied to the gas phase and the reaction product is pumped away. The theoretical
analysis and numerical simulations have shown [35] the existence of periodic trav-
eling waves of chemical concentrations in this model. The waves spontaneously
emerge starting form an unstable uniform state. Their wavelength λ can be again
roughly estimated by equation (11) where k is the rate constant of the annihilation
reaction. Thus, it can also be much shorter than the diffusion length and lie in the
nanoscale range.

Because the characteristic sizes of such traveling structures are very small, fluc-
tuations must be taken into account. Stochastic simulations (see [35, 36]) show
that the fluctuations break periodic traveling waves into small irregular fragments.
Figure 4 shows an example of such traveling wave fragments. Here the total size
of the system is only 555 elementary lattice lengths l0, the interaction radius is
r0 = 9l0 and the diffusion length is Ldif = 327l0. Hence, each fragment con-
tains only about a hundred of molecules. In the course of time, the fragments
change their shapes, split or merge. Nonetheless, the propagation remains robust
and the velocities of different fragments are close (this is clearly seen examining the
space-time cross section in Figure 4). Because of the physical cohesive interactions
between molecules, propagation of waves in this model involves mass transport and
therefore the fragments essentially represent traveling molecular clusters.
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Figure 4. Traveling nanoscale structures. Three snapshots (a, b, c) and the space-time diagram
corresponding to the central vertical cross section. From [35].

Recently, Okuzono and Ohta have studied [37] a model of a three-com-
ponent phase-separating mixture with a cyclic reaction scheme

A → B → C → A (13)

where strong repulsive interactions between molecules A and B were present. The
solutions in the form of traveling lamellar and hexagonal structures have been
found here.

Traveling waves in soft matter have been observed in the experiments with illu-
minated Langmuir films [38], though a satisfactory theory of this effect is not yet
available. In this case the characteristic wavelength of a pattern was still relatively
large, lying in the range of tens of micrometers. Traveling ‘atomic strings’ with
the sizes of less than a micrometer have been seen using atomic force microscopy
(AFM) on crystal surfaces under reaction conditions [39].

Another effect of self-organization in reactive soft matter is the formation of
dissipative localized nanostructures. Such structures were found in a theoretical
study of surface chemical reactions [40]. Here, adsorption of particles on a metal
surface induces a phase transition changing the arrangement of atoms in the top
metal layer. In return, surface regions with the modified structure become strongly
attractive for the adsorbed diffusing particles and they aggregate their. In absence of
a reaction, such modified regions would grow until they spread over the entire sur-
face bringing it to a different structural state. When a reaction is present, it removes
molecules from such regions and thus acts against the diffusive flow supplying the
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molecules into them. These two effects can balance each other, and stable circular
regions with the modified surface structure and a high concentration of adsorbed
molecules are produced. The sizes of these regions may be much smaller than the
diffusion length. Because the reaction predominantly proceeds inside such small
regions, where adsorbed molecules are concentrated, they can be viewed as self-
organized nanoscale microreactors. In contrast to equilibrium static nanostructures,
such as ‘quantum dots’, self-organized nanoreactors exist only in the presence of
a reaction. Their site and stability can be controlled by varying the reaction rate.
Moreover, they are not pinned to the surface and, by applying a gradient of a chem-
ical concentration, one can move them over the surface. Remarkably, mathematical
models used to describe such nanoscale self-organization phenomena bear strong
analogies to the equations describing the formation of bacterial colonies [41].

Though nanoscale self-organization in soft matter has so far been mainly theor-
etically investigated for polymer blends and catalytic surface reactions, such effects
are possible and should play an important role in other kinds of soft matter typical
for the living cells. Membranes consisting of two kinds of lipid molecules undergo
phase separation, which leads under equilibrium conditions to the segregation of
components, deformation of the membrane, and budding of a vesicle. When a
reaction transforming one kind of molecules into another is added, this may lead
to the stabilization of a spatially modulated distribution and complex stationary
membrane shapes. If a biomembrane includes active proteins, the spectrum of
possible behaviours is even more rich. Besides of stationary periodic or localized
structures, oscillations and traveling waves become possible. This means that a
biomembrane would itself act like a micromachine. Systematic investigations of
self-organization phenomena in condensed systems of a living cell are a challenge
for future research.
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